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Abstract. By means of the Laplace transform and a series expansion, exact solutions of the bound
state for the one-dimensional Schrödinger equation with a potential −Ze2/x are given. We found
that the energy levels are proportional to 1/n2 (n = 1, 2, 3, . . .) and the value of the wavefunction
of the bound state at the origin is zero. The reasons for the wrong answer that the energy levels are
proportional to (n + 1

2 )
−2 with n an integer are analysed.

1. Introduction

Recently, much theoretical effort has been devoted to studying the one-dimensional (1D)
Coulomb-type potentials of the Schrödinger equation, including the symmetric potential
−Ze2/|x| and the antisymmetric potential −Ze2/x. The reason for the great deal of interest in
discussing the 1D hydrogen atom potential −Ze2/|x| is partly due to its wide applications
to different physical topics involving excitons in high-temperature superconductivity [1],
semiconductors [2, 3], polymers [4, 5], 1D electron gas at the helium surface and the Wigner
crystal [6, 7], and partly due to contradictory conclusions regarding stationary eigenfunctions.
The eigenfunctions of the 1D hydrogen atom can have a definite parity because of its symmetric
potential. However, whether the even eigenfunctions and the odd eigenfunctions are true
bound states remains an open question. Flugge and Marschall [8] concluded that only the odd
states were bound solutions, while Loudon [9] argued that the even states were solutions, too.
Andrews [10] objected to the existence of Loudon’s ground state and Dai [11] claimed that
only eigenstates with even parity exist. Even though many wrangles still exist concerning
the eigenfunctions of the 1D hydrogen atom, all authors agree that the eigenvalues, i.e.
the energy levels of the 1D hydrogen atom, are proportional to 1/n2 (n = 1, 2, 3, . . .) [8–
14].

In contrast to the potential −Ze2/|x|, another Coulomb-type potential −Ze2/x seems not
to have been investigated widely yet, even though it may have applications in semiconductors
or insulators [15]. Employing the Laplace and Fourier transformations in momentum space,
Reyes and del Castillo-Mussot [15] claimed that the eigenenergies for the potential −Ze2/x

are proportional to
(
n + 1

2

)−2
with n an integer. Because of its antisymmetry and singular

character, it is of interest to discuss this potential in more detail.
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Figure 1. Potential V (x). Figure 2. Potential V1(x).

To investigate the bound states of the potential

V (x) = −Ze2/x (1)

we compare the behaviour of V (x) with an imaginary potential

V1(x) =
{ −Ze2/x x > 0

∞ x � 0.
(2)

First, we sketch these two potentials in figures 1 and 2. Obviously, potential V (x) and V1(x)

will have different scattering states because of the different barriers. However, for the bound
states, they will be the same because the bound states are determined by the potential well of
the right-half space and the boundary condition ψ(0) completely. The barriers of the left-half
space cannot affect the bound states and the boundary condition ψ(0), as will be shown below,
also equals zero for potential V (x). As is well known, instead of −(

n+ 1
2

)−2
, the eigenenergies

of the potential V1(x) are proportional to −1/n2 [16]. This result is different to that of [15].
The objective of this paper is to study this problem, in particular concerning the bound state
energies, in detail. We will prove that the conclusion concerning the energy levels given by
[15] is incorrect.

To illustrate our conclusion, we will employ the Laplace transform and the virial theorem
to discuss this problem and obtain the wavefunctions and the energy levels of bound states in
section 2. In section 3, to confirm our conclusion we will use a series expansion to find the
exact solutions of V (x). Instead of an input ψ(0) = 0 for the Laplace transform, in this section
ψ(0) = 0 is an output from the series expansion solution. In section 4 we will analyse why a
Fourier transform used in [15] gave the wrong answer, En ∝ −(

n + 1
2

)−2
. We will point out

that the correct Fourier transform will reduce to a Laplace transform in this problem because
the wavefunction ψ(x) = 0 in the regions −∞ < x � 0.
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2. Laplace transform

By means of the virial theorem of quantum mechanics [16], we find

E = 1
2 〈V (x)〉 = − 1

2Ze2
∫ ∞

−∞

|ψ(x)|2
x

dx (3)

for the Coulomb-type potential V (x), where ψ(x) is the wavefunction of bound states. If
ψ(x) does not tend to zero when x → 0, the integral of equation (3) will diverge and E will
approach negative infinity. This situation of course cannot be accepted and we come to the
conclusion that ψ(0) = 0. This boundary condition ψ(0) = 0 implies that we can take a
Laplace transform to solve this problem safely.

The 1D Schrödinger equation for the potential V (x) is given by

− h̄2

2m

d2ψ(x)

dx2
− Ze2

x
ψ(x) = Eψ(x). (4)

Introducing variable transformations

ζ =
√−2mE

h̄
x

γ = −Ze2
√−2mE

h̄E
> 0

(5)

we rewrite equation (4) as

d2ψ(ζ )

dζ
+

(
γ

ζ
− 1

)
ψ(ζ ) = 0. (6)

Performing the Laplace transform of equation (6) in the positive ζ regions yields

(s2 − 1)φ1(s) + γ

∫ ∞

s

φ1(s
′) ds ′ − dψ(0+)

dζ
= 0 (7)

where

φ1(s) =
∫ ∞

0
ψ(ζ ) e−sζ dζ (8)

is the Laplace transform of ψ(ζ ) and

dψ(0+)

dζ
= lim

�ζ→0+

ψ(0 + �ζ) − ψ(0)

�ζ
(9)

is the derivative of ψ(ζ ) when ζ → 0+. In above calculation, we have used the property

L[ψ(x)/x] =
∫ ∞

s

φ(s ′) ds ′. (10)

The solution of equation (7) reads

φ1(s) = B

s2 − 1

(
s − 1

s + 1

)γ /2

. (11)

Note that
(
s−1
s+1

)γ /2
is a multi-valued function and the wavefunction φ1(s) is required to be

single-valued, we must take

γ = 2n n = 1, 2, 3, . . . (12)
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and then φ1(s) becomes

φ1(s) = B

s2 − 1

(
s − 1

s + 1

)n

(13)

where B = dψ(0+)

dζ .
In order to obtain the wavefunctions of coordinate space, we must perform an inverse

Laplace transform of equation (13). By using the expansion theorem we obtain

ψ(ζ ) = B Res

[
(s − 1)n−1

(s + 1)n+1
esζ

] ∣∣∣∣
s=−1

= Bζe−ζ F (1 − n, 2; 2ζ ) (ζ > 0) (14)

where F(1 − n, 2; 2ζ ) is the confluent hypergeometric function or Kummer function.
Extending the above calculation of the bound state to the negative ζ region, we introduce

a transformation t = −ζ > 0, and rewrite equation (6) as

d2ψ(t)

dt2
+

(
−γ

t
− 1

)
ψ(t) = 0. (15)

By means of the same procedure, we find the solution of equation (15) as

φ2(s) = C

s2 − 1

(
s + 1

s − 1

)n

(16)

and its inverse Laplace transform as

ψ(t) = Cet t

[
1 +

n−1∑
k=1

(n − 1)(n − 2) · · · (n − k)

k!(k + 1)!
(2t)k

]
. (17)

We see when t → ∞, i.e. s → −∞, ψ(t) → ∞. The natural boundary condition of bound
state solutions that ψ (t → ∞) is finite requires C = 0. We only have a zero solution in the
negative ζ region for a bound state. This result is in agreement with our previous discussion
of V (x) and V1(x) in section 1. The barrier on the left-hand side would not affect the bound
state solutions.

In summary, we obtain the wavefunction

ψ(ζ ) =
{

Be−ζ ζF (1 − n, 2; 2ζ ) ζ > 0

0 ζ � 0
(18)

and the energy levels which are given by the condition (12) as

En = −mZ2e4

2h̄2n2
n = 1, 2, 3, . . . . (19)

3. Exact solution

To confirm the results given by the last section, we will use another method, namely a series
expansion, to solve the Schrödinger equation (6) in coordinate space exactly. We would like
to emphasize that instead of the input ψ(0) = 0 for introducing the Laplace transform in the
last section, the condition ψ(0) = 0 will be a natural conclusion, i.e. an output, in the series
expansion. According to the argument of Landau and Lifshiz [17] on a singular potential, the
matching conditions at x = 0 read: the wavefunction is continuous and the derivative of the
wavefunction may be discontinuous because x = 0 is the first-order singularity. We will use
this matching condition as well as the natural boundary conditions at x → ±∞ to determine
the bound state solutions of equation (6).
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3.1. The region ζ > 0

For large ζ , we can neglect the term γ /ζ in comparison with 1, equation (6) becomes

d2ψ

dζ 2
− ψ = 0. (20)

It has the asymptotic integrals ψ = e±ζ . Since the wavefunction ψ must remain finite when
ζ → +∞, the solution must be taken as ψ = e−ζ = e−t/2 where t = 2ζ . Therefore, it is
natural to make equation (6) the substitution

ψ(ζ ) = e−t/2U(t). (21)

The equation of function U(t) reads

tU ′′(t) − tU ′(t) + 1
2γU(t) = 0. (22)

Equation (22) is a Kummer equation, its two linearly independent solutions being

U1(t) = tF (1 − 1
2γ, 2; t) (23)

U2(t) = tF (1 − 1
2γ, 2; t) ln t − 1

2γ +
∞∑

n=2

ant
n (24)

where

an = (1 − 1
2γ )(2 − 1

2γ ) · · · (n − 1 − 1
2γ )

n!(n − 1)!

[
1

1 − 1
2γ

+
1

2 − 1
2γ

+ · · · +
1

n − 1 − 1
2γ

− 3

1 × 2
− 5

2 × 3
− · · · − 2n − 1

(n − 1)n

]
. (25)

The general solutions of equation (22) are

U(t) = B1U1(t) + B2U2(t) (26)

where B1 and B2 are arbitrary constants. When t → ∞ (i.e. ζ → ∞) and n → ∞,
F(1 − 1

2γ, 2; t) ≈ et and
∑∞

n=2 ant
n ≈ et . The solution which satisfies the conditions at

infinity is obtained only for γ = 2n, n = 1, 2, 3, . . . and B2 = 0. Hence the wavefunction is
given by

ψ(ζ ) = B1e−ζU1(2ζ ) = 2B1ζe−ζ F (1 − n, 2; 2ζ ) (ζ > 0) (27)

and the eigenenergies En are still given by equation (19).

3.2. The region ζ < 0

The same procedure can also be employed to discuss the solution in the region ζ � 0. With
the aid of the function transformation ψ(ζ ) = e−s/2U(s), s = −2ζ > 0, we have

sU ′′(s) − sU ′(s) − 1
2γU(s) = 0. (28)

The general solutions are

U(s) = CU3(s) + DU4(s) (29)

where

U3(s) = sF (1 + 1
2γ, 2; s)

U4(s) = sF (1 + 1
2γ, 2; s) ln s + 1

2γ +
∞∑

n=2

bns
n
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are two linearly independent solutions and

bn = (1 + 1
2γ )(2 + 1

2γ ) · · · (n − 1 + 1
2γ )

n!(n − 1)!

[
1

1 + 1
2γ

+
1

2 + 1
2γ

+ · · · +
1

n − 1 + 1
2γ

− 3

1 × 2
− 5

2 × 3
− · · · − 2n − 1

(n − 1)n

]
. (30)

Because of γ > 0, U3(s) and U4(s) are all divergent when ζ → ∞, we must choose
B3 = B4 = 0, and obtain zero solution ψ(ζ ) = 0 in the ζ � 0 region.

In summary, we come to the conclusion that

ψ(ζ ) =
{

2B1ζe−ζ F (1 − n, 2; 2ζ ) ζ > 0

0 ζ � 0.
(31)

The coefficients B in equation (18) and 2B1 in equation (31) are normalized constants. We
can easily prove that the wavefunctions have

ψ(0+) = ψ(0−) = ψ(0) = 0 (32)
dψ(0+)

dζ
= 2B1

dψ(0−)

dζ
= 0. (33)

The matching condition at ζ = 0 is indeed satisfied.

4. On the Fourier transform

As we have mentioned in section 1, the energy levels of the potential −Ze2/x given by [15]
are proportional to

(
n+ 1

2

)−2
, which is different from our conclusion, 1/n2, given in sections 2

and 3. The basic method employed by [15] is the Fourier transform. The authors of [15] took
a Fourier transform over the whole coordinate space to find the wavefunctions in momentum
space and the energy levels. In this section we hope to analyse their treatment and discuss
their result in detail.

Obviously, the first problem in the Fourier transform for the potential V (x) = −Ze2/x is
how to calculate the Fourier integral of 1/x. In [15] they used

r(p) = 1

2π

∫ ∞

−∞

1

ζ
e−ipζ dζ = − 1

2 i sign(p) (34)

as the Fourier transform of 1/ζ . Equation (34) refers to the principal value only, in general,
the exact Fourier integral of 1/ζ is given by

r(p) = 1

2π
lim
ε→0+

∫ ∞

−∞

e−ipζ

ζ ± iε
dζ = 1

2π

[
P

∫ ∞

−∞

e−ipζ

ζ
dζ ∓ iπ

]
= − 1

2 i sign(p) ∓ 1
2 i (35)

where P
∫ ∞
−∞

e−ipζ

ζ
dζ is the principal value of the integral. The additional term ∓ 1

2 i will
give a contribution to the momentum expression of 1/x. Instead of equation (34), if we use
equation (35) to perform the Fourier transform and employ the same procedure as [15] to find
the wavefunctions in momentum space, we shall obtain an incorrect answer. In fact, following
[15], the Fourier transform of equation (6) reads

−(
p2 + 1

)
φ(p) + γ

∫ ∞

−∞
r(p − p′)φ(p′) dp′ = 0 (36)
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where

φ(p) = 1

2π

∫ ∞

−∞
ψ(ζ ) e−ipζ dζ (37)

is the wavefunction in momentum space. Define

G(p) =
∫ p

0
φ(p′) dp′. (38)

Substituting equations (35) and (38) into equation (36) and using the same treatment as [15],
we find

G(p) = G(−∞) − Ae−iγ arctan p (39)

where A is in principle an arbitrary constant to be determined from the normalization condition.
Another equation by taking the lower plus sign of equation (35) is the same as that of
equation (39) if we notice

G(+∞) − G(−∞) = ψ(0) = 0. (40)

Evaluating equation (39) in −∞, we arrive at the conclusion that only a zero solution exists
because

Ae−iγπ/2 = 0 (41)

then A = 0. This is a trivial solution and, indeed, we cannot obtain a bound state solution. Of
course this is incorrect because the exact bound state solutions have been found in sections 2
and 3.

Now we are in a position to investigate further why the Fourier transform used by [15]
cannot give us a correct answer for this problem. Noting that the exact solution of the bound
state given by equation (31) has the important property that ψ(ζ ) = 0 when ζ � 0. This
property will affect the Fourier transform of equation (6) and make equation (36) incorrect. In
fact, considering ψ(ζ ) = 0 for ζ � 0, the Fourier transform of d2ψ

dζ 2 and ψ(ζ )

ζ
becomes

F

[
d2ψ

dζ 2

]
= 1

2π

∫ ∞

−∞

d2ψ

dζ 2
e−ipζ dζ = 1

2π

∫ ∞

0

d2ψ

dζ 2
e−ipζ dζ

= −p2φ(p) − 1

2π

dψ(0)

dζ
(42)

F

[
1

ζ
ψ(ζ )

]
= 1

2π

∫ ∞

−∞

ψ(ζ )

ζ
e−ipζ dζ = 1

2π

∫ ∞

0

ψ(ζ )

ζ
e−ipζ dζ

= −i
∫ p

0
φ(p′) dp′ +

1

2π

∫ ∞

0

ψ(ζ )

ζ
dζ (43)

respectively, and the Fourier transform of equation (6) reads

−(
p2 + 1

)
φ(p) − iγ

∫ p

0
φ(p′) dp′ +

γ

2π

∫ ∞

0

ψ(ζ )

ζ
dζ − 1

2π

dψ(0)

dζ
= 0. (44)

The last two terms of the left-hand side of equation (44) are constants. Taking a variable
transform s = ip, we can easily prove that equation (44) reduces to equation (7) and the Fourier
transform reduces to a Laplace transform. Then we arrive at the conclusions of section 2.

Equation (44) can also be solved directly. Deriving equation (44) with p, we obtain

−(
p2 + 1

)
φ′(p) − 2pφ(p) − iγφ(p) = 0. (45)
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Its general solutions are

φ(p) = A

p2 + 1
e−iγ Arctan p (46)

where Arctan p is a multi-valued function, and

Arctan p = arctan p ± kπ (k = 0, 1, 2, . . .) (47)

− 1
2π � arctan p � 1

2π. (48)

Substituting equation (47) into equation (46),

φ(p) = A

p2 + 1
e−ipγ arctan p±iγ kπ . (49)

Since the wavefunction ψ(ζ ) and φ(p) must be a single-valued function, we obtain

γ = 2n (n = 1, 2, 3, . . .) (50)

and the energy levels equation (19). Substituting equation (49) into equation (44), one can
confirm equation (49) is the solution of equation (44) by a direct calculation.

In summary, employing the Laplace transform and using the series expansion method, we
have found that the exact bound state solutions and the eigenenergies of the 1D Schrödinger
equation with the potential −Ze2/x. We have proven that the energy levels of the −Ze2/x

potential are proportional to 1/n2, where n is an integer. The character of the bound states for
the potential −Ze2/x is the same as that of V1(x) given by equation (1) because the value of
the wavefunction at the origin point is zero for both cases. Since ψ(ζ ) = 0 for ζ � 0, the
Fourier transform will reduce to a Laplace transform directly. The basic reason for the incorrect
solutions given by [15] is that they have not paid attention to the behaviour of wavefunction,
i.e. ψ(0) = 0 and ψ(ζ ) = 0 when ζ � 0.
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[16] Cohen-Tannoudji C, Diu B and Laloë F 1977 Quantum Mechanics (New York: Wiley-Interscience)
[17] Landau L D and Lifshitz E M 1976 Quantum Mechanics, Nonrelativistic Theory (Oxford: Pergamon) chapter 18


